Abstract

The proofs of major results of Computability Theory like Rice, Rice-Shapiro or Kleene's fixed point theorem hidemore information of what is usually expressed in theirrespective statements. We make this information explicit, allowing to state stronger, complexity theoretic-versions of all these theorems. In particular, we replace the notion of extensional set of indices of programs, by a set of indices of programs having not only the same extensional behavior but also similar complexity (Complexity Clique). We prove, under very weak complexity assumptions, that any recursive Complexity Clique is trivial, and any r.e. Complexity Clique is an extensional set (and thus satisfies Rice-Shapiro conditions). This allows, for instance, to use Rice's argument to prove that the property of having polynomial complexity is not decidable, and to use Rice-Shapiro to conclude that it is not even semi-decidable. We conclude the paper with a discussion of "complexity-theoretic" versions of Kleene's Fixed Point Theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.