Abstract

BackgroundRecent studies have shown that dietary intakes and gene variants have a critical role in the obesity related comorbidities. This study aimed to evaluate the effects of the interactions between Fatty acid desaturase 2 (FADS2) gene rs174583 polymorphism and two dietary indices on cardiometabolic risk factors.MethodsThis cross-sectional study was carried out on 347 obese adults aged 20-50 years old in Tabriz, Iran. Healthy eating index (HEI) and Diet quality index-international (DQI-I) were evaluated by a validated semi-quantitative 147-item Food frequency questionnaire (FFQ). Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used to determine FADS2 gene variants. Multivariate analysis of covariance (MANCOVA) was used to identify gene-diet interactions on metabolic parameters.ResultsWaist circumference (WC) and serum triglyceride (TG) levels were significantly higher among carriers of TT genotype of FADS2 gene (P < 0.05). In addition, the interactions between FADS2 gene rs174583 polymorphism and DQI-I had significant effects on weight (P interaction = 0.01), fat mass (P interaction = 0.04), fat free mass (P interaction = 0.03), and Body mass index (BMI) (P interaction = 0.02); the highest level of these parameters belonged to TT carriers. Similarly, the interactions between FADS2 gene variants and HEI had significant effects on insulin (P interaction < 0.001), Homeostasis model assessment of insulin resistance (HOMA-IR) (P interaction < 0.001), Quantitative insulin check index (QUICKI) (P interaction = 0.001), and alpha Melanocyte stimulating hormone (α-MSH) (P interaction = 0.03).ConclusionIn this study, for the first time, we reported the effects of gene-diet interactions on metabolic traits. Compliance with dietary indices (DQI-I and HEI) ameliorated the adverse effects of gene variants on metabolic risk factors, especially in heterogeneous genotypes. Further prospective cohort studies are needed to confirm these results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call