Abstract

ADD/ADHD is the most common and most studied neurodevelopmental problem. Recent statistics from the U.S. Center for Disease Control state that 11% or approximately one out of every nine children in the US and one in five high school boys are diagnosed with ADD/ADHD. This number is thought to be increasing at around 15–20% per year. The US National Institute of Mental Health’s Multi-modal Treatment Study has shown that medication has no long-term benefit for those with ADHD. To effectively address ADD/ADHD from within the framework of child public health, an interdisciplinary strategy is necessary that is based on a neuroeducational model that can be readily implemented on a large-scale within the educational system. This study is based on previous findings that ADD/ADHD children possess underactivity between sub-cortical and cortical regions. An imbalance of activity or arousal in one area can result in functional disconnections similar to that seen in split-brain patients. Since ADD/ADHD children exhibit deficient performance on tests developed to measure perceptual laterality, evidence of weak laterality or failure to develop laterality has been found across various modalities (auditory, visual, tactile). This has reportedly resulted in abnormal cerebral organization and ineffective cortical specialization necessary for the development of language and non-language function. This pilot study examines groups of ADD/ADHD and control elementary school children all of whom were administered all of the subtests of the Wechsler Individual Achievement Tests, the Brown Parent Questionnaire, and given objective performance measures on tests of motor and sensory coordinative abilities. Results measured after a 12-week remediation program aimed at increasing the activity of the hypothesized underactive right hemisphere function, yielded significant improvement of greater than 2 years in grade level in all domains except in mathematical reasoning. The treated group also displayed a significant improvement in behavior with a reduction in Brown scale behavioral scores. Non-treated control participants did not exhibit significant differences during the same 12 week period in academic measurements. Controls were significantly different from treatment participants in all domains after a 12-week period. The non-treatment group also demonstrated an increase in behavioral scores and increased symptoms of ADD/ADHD over the same time period when compared to the treated group. Results are discussed in the context of the concept of functional disconnectivity in ADD/ADHD children.

Highlights

  • Public health issues surrounding Attention Deficit/Hyperactivity Disorders (ADD/attention deficit hyperactivity disorder (ADHD)) have not been thoroughly studied but for a few major published works on the subject [1, 2]

  • The medical model presents attention deficit hyperactivity disorder (ADHD) as a brain dysfunction to be treated with medication that changes the biology of the brain

  • This study examines an intervention that involves neurophysiologically specific treatment that is integrated with educational interventions that address the heterogeneity of symptoms of Attention Deficit Disorder (ADD)/ADHD

Read more

Summary

Introduction

Public health issues surrounding Attention Deficit/Hyperactivity Disorders (ADD/ADHD) have not been thoroughly studied but for a few major published works on the subject [1, 2]. Numerous researchers have reported specific impairment in executive functioning as part of the core deficits of ADHD [5, 6]. Because ADD/ADHD is so heterogeneous, it seems unlikely that a single unifying “deficit” would emerge. This may well be why the medical model may be an inappropriate way to both view the problem and to address its remediation [7]. The medical model presents attention deficit hyperactivity disorder (ADHD) as a brain dysfunction to be treated with medication that changes the biology of the brain. More comprehensive programs that would effect neuroplasticity may be better suited to effect change in ADD/ADHD on a large scale

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.