Abstract
The Vazante deposit, which is the world's largest zinc silicate deposit, occurs in brecciated dolomite and comprises mainly willemite with various proportions of hematite, Fe-carbonate, minor franklinite and magnetite. Exploration for this type of deposit is more challenging than zinc sulfide deposits, as they do not exhibit similar geophysical anomalies. To improve the application of geophysical surveys to the exploration of hypogene silicate zinc deposits, data from 475 samples were investigated from drill holes representative of the various types of ore and host rocks as well as barren zones of known geophysical anomalies in the Vazante District. Lithogeochemical and mineralogical (optical, SEM and MLA) data were integrated with physical rock properties (density, magnetic susceptibility and KUTh gamma-ray spectrometry) to assist in exploring for this type of deposit. The most distinct physical property of the ore is density, compared with the host rocks due to high proportion of denser minerals (hematite and willemite). However, barren hematite breccias also have high densities. The zinc ore and hematite breccias yielded higher magnetic susceptibilities than the surrounding host rocks, with the highest values associated with greater proportions of franklinite and magnetite. The density and magnetic susceptibility contrasts are a result of hydrothermal fluids interacting with and altering the carbonate host rocks. Zinc ore also yielded elevated U concentrations relative to the various host rocks, yielding higher gamma-ray spectrometric values. The results of this investigation indicate that an integration of magnetic, gravimetric and radiometric surveys would be required to identify zinc silicate ore zones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.