Abstract

We examine how differently oriented components contribute to the discrimination of motion direction along a horizontal axis. Stimuli were two-frame random-dot kinematograms that were narrowband filtered in spatial frequency. On each trial, subjects had to state whether motion was to the left or the right. For each stimulus condition, Dmax (the largest displacement supporting 80% correct direction discrimination performance) was measured. In experiment 1, Dmax was measured for orientationally narrowband stimuli as a function of their mean orientation. Dmax was found to increase as the orientation of the stimuli became closer to the axis of motion. Experiment 2 used isotropic stimuli in which some orientation bands contained a coherent motion signal, and some contained only noise. When the noise band started at vertical orientations and increased until only horizontal orientations contained a coherent motion signal, Dmax increased slightly. This suggests that near-vertical orientations interfere with motion perception at large displacements when they contain a coherent motion signal. When the noise band started at horizontal and increased until only vertical orientations contained the motion signal, Dmax decreased steadily. This implies that Dmax depends at least partly on the most horizontal motion signal in the stimulus. These results were contrasted with two models. In the first, the visual system utilises the most informative orientations (nearest horizontal). In the second, all available orientations are used equally. Results supported an intermediate interpretation, in which all orientations are used but more informative ones are weighted more heavily.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call