Abstract
AbstractAs exemplified in the 2010 Stuxnet attack on Iranian nuclear facilities, cyber attackers have capabilities to embed disruptive infections into equipment that is employed within physical systems. This paper presents a cyber security design approach that addresses cyber attacks that include modification of operator displays used for support in managing software controlled automated systems. This class of problems is especially important because our nation's critical infrastructures include such systems. In addition, many other systems, such as surveillance systems, navigation systems, and communications systems, are candidates for such solutions as they continue to become more and more automated. The suggested design approach builds upon fault–tolerant and automatic control system techniques that, with important and necessary modifications, are the basis for providing improved cyber security. In particular, the appropriate combination of diversely redundant security designs coupled with system dynamics models and state estimation techniques provide a potential means for detecting purposeful adjustments to operator displays. This paper provides a theoretical approach for designing such solutions and a corresponding set of examples with simulation–based results. In addition, the paper includes a discussion of important implementation requirements for greater assurance of such physical system security solutions. © 2013 Wiley Periodicals, Inc. Syst Eng 16
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.