Abstract

ABSTRACT We present the integrated three-point shear correlation function iζ± – a higher order statistic of the cosmic shear field – which can be directly estimated in wide-area weak lensing surveys without measuring the full three-point shear correlation function, making this a practical and complementary tool to two-point statistics for weak lensing cosmology. We define it as the one-point aperture mass statistic Map measured at different locations on the shear field correlated with the corresponding local two-point shear correlation function ξ±. Building upon existing work on the integrated bispectrum of the weak lensing convergence field, we present a theoretical framework for computing the integrated three-point function in real space for any projected field within the flat-sky approximation and apply it to cosmic shear. Using analytical formulae for the non-linear matter power spectrum and bispectrum, we model iζ± and validate it on N-body simulations within the uncertainties expected from the sixth year cosmic shear data of the Dark Energy Survey. We also explore the Fisher information content of iζ± and perform a joint analysis with ξ± for two tomographic source redshift bins with realistic shape noise to analyse its power in constraining cosmological parameters. We find that the joint analysis of ξ± and iζ± has the potential to considerably improve parameter constraints from ξ± alone, and can be particularly useful in improving the figure of merit of the dynamical dark energy equation of state parameters from cosmic shear data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.