Abstract
ABSTRACT We present the integrated three-point shear correlation function iζ± – a higher order statistic of the cosmic shear field – which can be directly estimated in wide-area weak lensing surveys without measuring the full three-point shear correlation function, making this a practical and complementary tool to two-point statistics for weak lensing cosmology. We define it as the one-point aperture mass statistic Map measured at different locations on the shear field correlated with the corresponding local two-point shear correlation function ξ±. Building upon existing work on the integrated bispectrum of the weak lensing convergence field, we present a theoretical framework for computing the integrated three-point function in real space for any projected field within the flat-sky approximation and apply it to cosmic shear. Using analytical formulae for the non-linear matter power spectrum and bispectrum, we model iζ± and validate it on N-body simulations within the uncertainties expected from the sixth year cosmic shear data of the Dark Energy Survey. We also explore the Fisher information content of iζ± and perform a joint analysis with ξ± for two tomographic source redshift bins with realistic shape noise to analyse its power in constraining cosmological parameters. We find that the joint analysis of ξ± and iζ± has the potential to considerably improve parameter constraints from ξ± alone, and can be particularly useful in improving the figure of merit of the dynamical dark energy equation of state parameters from cosmic shear data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.