Abstract

Abstract Towards the end of the 19th century, geodetic observation techniques allowed it to create geodetic networks of continental size. The insight that big networks can only be set up through international collaboration led to the establishment of an international collaboration called “Central European Arc Measurement”, the predecessor of the International Association of Geodesy (IAG), in 1864. The scope of IAG activities was extended already in the 19th century to include gravity. At the same time, astrometric observations could be made with an accuracy of a few tenths of an arcsecond. The accuracy stayed roughly on this level, till the space age opened the door for milliarcsecond (mas) astrometry. Astrometric observations allowed it at the end of the 19th century to prove the existence of polar motion. The insight that polar motion is almost unpredictable led to the establishment of the International Latitude Service (ILS) in 1899. The IAG and the ILS were the tools (a) to establish and maintain the terrestrial and the celestial reference systems, including the transformation parameters between the two systems, and (b) to determine the Earth's gravity field. Satellite-geodetic techniques and astrometric radio-interferometric techniques revolutionized geodesy in the second half of the 20th century. Satellite Laser Ranging (SLR) and methods based on the interferometric exploitation of microwave signals (stemming from Quasars and/or from satellites) allow it to realize the celestial reference frame with (sub-)mas accuracy, the global terrestrial reference frame with (sub-)cm accuracy, and to monitor the transformation between the systems with a high time resolution and (sub-)mas accuracy. This development led to the replacement of the ILS through the IERS, the International Earth Rotation Service in 1989. In the pre-space era, the Earth's gravity field could “only” be established by terrestrial methods. The determination of the Earth's gravitational field was revolutionized twice in the space era, first by observing geodetic satellites with optical, Laser, and Doppler techniques, secondly by implementing a continuous tracking with spaceborne GPS receivers in connection with satellite gradiometry. The sequence of the satellite gravity missions CHAMP, GRACE, and GOCE allow it to name the first decade of the 21st century the “decade of gravity field determination”. The techniques to establish and monitor the geometric and gravimetric reference frames are about to reach a mature state and will be the prevailing geodetic tools of the following decades. It is our duty to work in the spirit of our forefathers by creating similarly stable organizations within IAG with the declared goal to produce the geometric and gravimetric reference frames (including their time evolution) with the best available techniques and to make accurate and consistent products available to wider Earth sciences community as a basis for meaningful research in global change. IGGOS, the Integrated Global Geodetic Observing System, is IAG's attempt to achieve these goals. It is based on the well-functioning and well-established network of IAG services.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.