Abstract

Frequency domain methods form a ubiquitous part of the statistical toolbox for time-series analysis. In recent years, considerable interest has been given to the development of new spectral methodology and tools capturing dynamics in the entire joint distributions, and thus avoiding the limitations of classical, L2-based spectral methods. Most of the spectral concepts proposed in that literature suffer from one major drawback, though: their estimation requires the choice of a smoothing parameter, which has a considerable impact on estimation quality and poses challenges for statistical inference. In this paper, associated with the concept of a copula-based spectrum, we introduce the notion of a copula spectral distribution function or integrated copula spectrum. This integrated copula spectrum retains the advantages of copula-based spectra but can be estimated without the need for smoothing parameters. We provide such estimators, along with a thorough theoretical analysis, based on a functional central limit theorem, of their asymptotic properties. We leverage these results to test various hypotheses that cannot be addressed by classical spectral methods, such as the lack of time reversibility or asymmetry in tail dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.