Abstract

A new kind of integral formulas for $${\bar{P}_{n,m} (x)}$$ is derived from the addition theorem about the Legendre Functions when n − m is an even number. Based on the newly introduced integral formulas, the fully normalized associated Legendre functions can be directly computed without using any recursion methods that currently are often used in the computations. In addition, some arithmetic examples are computed with the increasing degree recursion and the integral methods introduced in the paper respectively, in order to compare the precisions and run-times of these two methods in computing the fully normalized associated Legendre functions. The results indicate that the precisions of the integral methods are almost consistent for variant x in computing $${\bar{P}_{n,m} (x)}$$ , i.e., the precisions are independent of the choice of x on the interval [0,1]. In contrast, the precisions of the increasing degree recursion change with different values on the interval [0,1], particularly, when x tends to 1, the errors of computing $${\bar{P}_{n,m} (x)}$$ by the increasing degree recursion become unacceptable when the degree becomes larger and larger. On the other hand, the integral methods cost more run-time than the increasing degree recursion. Hence, it is suggested that combinations of the integral method and the increasing degree recursion can be adopted, that is, the integral methods can be used as a replacement for the recursive initials when the recursion method become divergent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.