Abstract

For any odd integer $d$, we give a presentation for the integral Chow ring of the stack $\mathcal {M}_{0}(\mathbb {P}^r, d)$, as a quotient of the polynomial ring $\mathbb {Z}[c_1,c_2]$. We describe an efficient set of generators for the ideal of relations, and compute them in generating series form. The paper concludes with explicit computations of some examples for low values of $d$ and $r$, and a conjecture for a minimal set of generators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.