Abstract

BackgroundMolecular and genetic studies in model organisms have recently revealed a dynamic interplay between immunity and ageing mechanisms. In the fruit fly Drosophila melanogaster, inhibition of the insulin/insulin-like growth factor signaling pathway prolongs lifespan, and mutations in the insulin receptor substrate Chico extend the survival of mutant flies against certain bacterial pathogens. Here we investigated the immune phenotypes, immune signaling activation and immune function of chico mutant adult flies against the virulent insect pathogen Photorhabdus luminescens as well as to non-pathogenic Escherichia coli bacteria.ResultsWe found that D. melanogaster chico loss-of-function mutant flies were equally able to survive infection by P. luminescens or E. coli compared to their background controls, but they contained fewer numbers of bacterial cells at most time-points after the infection. Analysis of immune signaling pathway activation in flies infected with the pathogenic or the non-pathogenic bacteria showed reduced transcript levels of antimicrobial peptide genes in the chico mutants than in controls. Evaluation of immune function in infected flies revealed increased phenoloxidase activity and melanization response to P. luminescens and E. coli together with reduced phagocytosis of bacteria in the chico mutants. Changes in the antibacterial immune function in the chico mutants was not due to altered metabolic activity.ConclusionsOur results indicate a novel role for chico in the regulation of the antibacterial immune function in D. melanogaster. Similar studies will further contribute to a better understanding of the interconnection between ageing and immunity and lead to the identification and characterization of the molecular host components that modulate both important biological processes.

Highlights

  • Molecular and genetic studies in model organisms have recently revealed a dynamic interplay between immunity and ageing mechanisms

  • We found that intrathoracical injection of P. luminescens pathogenic bacteria resulted in substantial mortality of the flies; again there were no significant differences in the survival ability between the infected chico mutants and yw control flies

  • For infections with the pathogen P. luminescens, we consistently found that yw flies contained significantly higher pathogen titers than chico mutant flies for each time-point tested in our experiments (P < 0.05; Fig. 2b)

Read more

Summary

Introduction

Molecular and genetic studies in model organisms have recently revealed a dynamic interplay between immunity and ageing mechanisms. We investigated the immune phenotypes, immune signaling activation and immune function of chico mutant adult flies against the virulent insect pathogen Photorhabdus luminescens as well as to non-pathogenic Escherichia coli bacteria. Ageing involves a large number of complex changes in the physiology of animals. Most of these changes lead to general decline in the fitness of the animal, deterioration of many vital functions, and a subsequent exponential increase in mortality [1]. Earlier reports have indicated that ageing is correlated with a decline in immune functions [4]. Immune deficiencies are associated with pathologies, many of which increase in frequency with age. Ageing individuals suffer increased mortality upon infection due to reduced capacity to activate immune mechanisms in response to microbial challenge [5]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call