Abstract

Proteolytic cleavage of the six known insulin-like growth factor binding proteins (IGFBPs) is a powerful means of rapid structure and function modification of these important growth-regulatory proteins. Intact IGFBP-4 is a potent inhibitor of IGF action in vitro, and cleavage of IGFBP-4 has been shown to abolish its ability to inhibit IGF stimulatory effects in a variety of systems, suggesting that IGFBP-4 proteolysis acts as a positive regulator of IGF bioavailability. Here we report the isolation of an IGF-dependent IGFBP-4-specific protease from human fibroblast-conditioned media and its identification by mass spectrometry microsequencing as pregnancy-associated plasma protein-A (PAPP-A), a protein of unknown function found in high concentrations in the maternal circulation during pregnancy. Antibodies raised against PAPP-A both inhibited and immunodepleted IGFBP-4 protease activity in human fibroblast-conditioned media. Moreover, PAPP-A purified from pregnancy sera had IGF-dependent IGFBP-4 protease activity. PAPP-A mRNA was expressed by the human fibroblasts and osteoblasts, and PAPP-A protein was secreted into the culture medium. In conclusion, we have identified an IGF-dependent IGFBP protease and at the same time assigned a function to PAPP-A. This represents an unanticipated union of two areas of research that were not linked in any way before this report.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call