Abstract

The instantaneous efficiency of an epicyclic gear rotary actuator is an important factor in sizing flight control systems where compound epicyclic gear trains are typically used. The efficiency variation can be smooth or fluctuating depending on the combination and timing of the teeth of ring, planet, and sun gears. In this paper, the instantaneous efficiency characteristics of synchronous and nonsynchronous actuators under forward-driving with opposing load and reverse-driving with aiding load are investigated. The emphasis will be on instantaneous, rather than average efficiency of gears. Several gear arrangements are considered: external and internal gears, simple planetary gears and compound planetary gears. Efficiency will be discussed considering not only the geometry of the mating gears, but also the relative phasing of the planet gears relative to the sun and ring gears. Synchronous compound epicyclic gears are shown to have large fluctuation in their instantaneous efficiency. When reverse-driving efficiency falls below 0%, the unit cannot be back-driven and will chatter. Nonsynchronous compound gears have a smaller variation in instantaneous efficiency. However, extra care must be taken in timing the compound planet gears, as well as clocking position of compound planet gears relative to ring gears and the sun gear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.