Abstract

The nonparallel linear stability analysis of flow through a slowly diverging pipe undergoing viscous heating is considered. The pipe wall is maintained at constant temperatures and Nahme’s law is applied to model the temperature dependence of the fluid viscosity. A one-parameter family of velocity profiles for the basic state is obtained for small angles of divergence. The nonparallel stability equations for the disturbance velocity coupled to a linearized energy equation are derived and solved using a spectral collocation method. Our results indicate that increasing viscous heating, characterized by increasing Nahme number, is destabilizing. The Prandtl number has a negligible effect on the linear stability characteristics. The Grashof number stablizes the flow for Gr>106, below which it has a negligible effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.