Abstract
We performed two-dimensional unsteady calculations of reactive flows, based on the compressible N-S equation, to study the effects of unburned-gas temperature on the instability of flame fronts. As the unburned-gas temperature became lower, the growth rate decreased and the unstable range narrowed. This was due mainly to the reduction of the burning velocity of a planar flame. The normalized growth rate increased with a decrease of the unburned-gas temperature, and the normalized unstable range widened at Lewis numbers smaller than unity. This was because that the thermal-expansion effects became stronger owing to the increase of the temperature ratio of burned and unburned gases, and that the diffusive-thermal effects strengthened at Lewis numbers smaller than unity owing to the increase of the Zeldovich number. Moreover, the cellular shape of flame fronts formed, which was due to intrinsic instability. The normalized burning velocity of a cellular flame increased as the unburned-gas temperature became lower, especially in premixed flames with small Lewis numbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series B
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.