Abstract
Proton complexation differs from simple protonation by the fact that the coordinated hydrogen atom is bound intramolecularly to more than one donor atom. This is usually achieved by covalent bonding supplemented by hydrogen bonding. In a few cases, however, the complexed proton is hydrogen-bound to all donor atoms, which gives rise to single well (SWHB) and low barrier (LBHB) hydrogen bonds. This tutorial review highlights a full range of proton complexes formed with chelating and "proton-sponge"-type ligands, cryptand-like macropolycycles, and molecules of topological relevance, such as rotaxanes and catenanes. The concept of proton complexation can explain how the smallest cation possible can bring molecules to order and trigger intramolecular molecular rearrangements and motions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.