Abstract

Mammalian cells contain thousands of metalloproteins and have evolved sophisticated systems for ensuring that metal cofactors are correctly assembled and delivered to their proper destinations. Equally critical in this process are the strategies to avoid the insertion of the wrong metal cofactor into apo-proteins and to avoid the damage that redox-active metals can catalyze in the cellular milieu. Iron and zinc are the most abundant metal cofactors in cells and iron cofactors include heme, iron-sulfur clusters, and mono- and dinuclear iron centers. Systems for the intracellular trafficking of iron cofactors are being characterized. This review focuses on the trafficking of ferrous iron cofactors in the cytosol of mammalian cells, a process that involves specialized iron-binding proteins, termed iron chaperones, of the poly rC-binding protein family.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call