Abstract

A role for inositol 1,4,5-trisphosphate (IP(3)) as a second messenger during olfactory transduction has been postulated in both vertebrates and invertebrates. However, given the absence of either suitable pharmacological reagents or mutant alleles specific for the IP(3) signaling pathway, an unequivocal demonstration of IP(3) function in olfaction has not been possible. Here we have investigated the role of a well-established cellular target of IP(3)-the IP(3) receptor (IP(3)R)-in olfactory transduction in Drosophila. For this purpose we tested existing viable combinations of IP(3)R mutant alleles, as well as a newly generated set of viable itpr alleles, for olfactory function. In all of the viable allelic combinations primary olfactory responses were found to be normal. However, a subset of itpr alleles (including a null allele) exhibit faster recovery after a strong pulse of odor, indicating that the IP(3)R is required for maintenance of olfactory adaptation. Interestingly, this defect in adaptation is dominant for two of the alleles tested, suggesting that the mechanism of adaptation is sensitive to levels of the IP(3)R.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.