Abstract

A brief review and analysis of two historical models of the electron, the charged spinning sphere and Goudsmit and Uhlenbeck’s concept, is presented. It is shown that the enormous potential of classical electrodynamics has been underutilized in particle physics. Such observation leads to discovery of a principal component in the electron inner structure—the charged c-ring. The intrinsic (fundamental) electron model based on the charged c-ring successfully explains the ontology of the charge fractionation in quantum chromodynamics and the formation of Cooper pairs in superconductivity. The c-ring properties are explained on the basis of the General Compton Conditions as defined. Properties of the charged c-ring include the explanation of the boundary conditions, electro-magnetostatic field configuration, self-mass, spin, magnetic moment, and the gyromagnetic ratio. The self-mass of the intrinsic electron is 100% electro-magnetostatic and it is shown how to compute its value. The classical-quantum divide no longer exists. Relation between the intrinsic electron and the electron is fundamentally defined. The electron is the composite fermion consisting of the intrinsic electron and the neutrino. The ontology of the anomaly in the electron magnetic moment is demonstrated—it is due to the addition of the neutrino magnetic moment to the overall electron magnetic moment. The intrinsic electron replaces the W? boson in particle physics, resulting in a fundamental implication for the Standard Model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call