Abstract

Concern regarding the spread of silver carp ( Hypopthalmichthys molitrix) and bighead carp ( Aristichthysc nobilis) through the Illinois River has prompted the development of an Acoustic Fish Deterrent (AFD) system. The application of this technology has resulted in a need to understand the auditory physiology of fish other than the target species, in order to minimise the effect of the AFD barrier on the ecology of indigenous fish populations. To this end, both the structures involved in sound reception and the hearing abilities of the paddlefish ( Polyodon spathula) and the lake sturgeon ( Acipenser fulvescens) are studied here using a combination of morphological and physiological approaches, revealing that both fish are responsive to sounds ranging in frequency from 100 to 500 Hz. The lowest hearing thresholds from both species were acquired from frequencies in a bandwidth of between 200 and 300 Hz, with higher thresholds at 100 and 500 Hz. The rationale for studying hearing in P. spathula and A. fulvescens in particular, is the value placed on them by both the commercial caviar producing industry and by the recreational fisheries sector. The hearing abilities of twelve P. spathula and twelve A. fulvescens were tested in sound fields dominated by either sound pressure or particle motion, with the results showing that acipenseriform fish are responsive to the motion of water particles in a sound field, rather than the sound pressure component. In this study, we measure the intensity of the sound field required to evoke threshold responses using a pressure sensitive hydrophone, as pressure dominated sound fields are the most audible acoustic condition for specialists like H. molitrix and A. nobilis (the target species). The results of the auditory examination clearly show that P. spathula and A. fulvescens are not sensitive to sound pressure, and will therefore have a significantly higher deterrent threshold than H. molitrix and A. nobilis in a pressure dominated sound field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call