Abstract
The initial-final mass relation represents a mapping between the mass of a white dwarf remnant and the mass that the hydrogen-burning main-sequence star that created it once had. The empirical relation thus far has been constrained using a sample of ~40 stars in young open clusters, ranging in initial mass from ~2.75 to 7 M☉, and shows a general trend that connects higher mass main-sequence stars with higher mass white dwarfs. In this paper, we present CFHT CFH12K photometric and Keck LRIS multiobject spectroscopic observations of a sample of 22 white dwarfs in two older open clusters, NGC 7789 (t = 1.4 Gyr) and NGC 6819 (t = 2.5 Gyr). We measure masses for the highest signal-to-noise ratio spectra by fitting the Balmer lines to atmosphere models and place the first direct constraints on the low-mass end of the initial-final mass relation. Our results indicate that the observed general trend at higher masses continues down to low masses, with Minitial = 1.6 M☉ main-sequence stars forming Mfinal = 0.54 M☉ white dwarfs. When added to our new data from the very old cluster NGC 6791, the relation is extended down to Minitial = 1.16 M☉ (corresponding to Mfinal = 0.53 M☉). This extension of the relation represents a fourfold increase in the total number of hydrogen-burning stars for which the integrated mass loss can now be calculated from empirical data, assuming a Salpeter initial mass function. The new leverage at the low-mass end is used to derive a purely empirical initial-final mass relation. The sample of white dwarfs in these clusters also shows several interesting systems that we discuss further: a DB (helium) white dwarf, a magnetic white dwarf, a DAB (mixed hydrogen/helium atmosphere or a double degenerate DA+DB) white dwarf(s), and two possible equal-mass DA double degenerate binary systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.