Abstract
We study the asymptotic blow-up behavior of nonnegative solutions to the quasilinear heat equation $$ u_t = (u^2)_{xx} + u^2 \quad \text{for $x \in \mathbf{R}, \,\, t > 0$}, $$ with nonnegative, bounded, continuous initial data. We give a complete classification of all possible types of blow-up behavior for compactly supported initial data. For data which look like a step function we construct self-similar blow-up patterns (logarithmic traveling wave solutions) for which the corresponding blow-up sets are empty.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.