Abstract
To increase the sustainability of footwear and align it with the circular bioeconomy, there is a pressing need to develop novel bio-based materials to replace the synthetic polymers currently used. In this study, casein-based films were prepared by solution casting with a tannic acid cross-linker, and a glycerol plasticizer. The properties important to footwear materials were characterised, including tensile strength and elongation, stitch strength, hardness, grain cracking strength, water vapour permeability, and thermal properties. The tannic acid imparted a brown colour to the films with good resistance to light-induced fading. Their tensile strengths were 4–5 N/mm2, elongation at break 45%–73%, and water vapour permeability 0.2–0.6 mg/(cm2h), depending upon the levels of the cross-linker and plasticiser. The strength of the films was close to those of some non-leather footwear materials such as compact rubbers and insock materials, but below that required for leather shoe vamps/uppers. The casein films were successfully used in sneaker- and ballerina-style shoes as components of the insock and decorative design elements on the vamp. This work has demonstrated the concept of using casein films in footwear. The properties of the films could be improved by further research, particularly with respect to cross-linking, plasticizing, and combining with bio-based fibers and fabrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.