Abstract

The initial cluster mass function (ICMF) is a fundamental property of star formation in galaxies. To gauge its universality, we measure and compare the ICMFs in irregular and spiral galaxies. Our sample of irregular galaxies is based on 13 nearby galaxies selected from a volume-limited sample from the fifth data release of the Sloan Digital Sky Survey (SDSS). The extinctions, ages, and masses were determined by comparing their u'g'i'z' magnitudes to those generated from starburst models. Completeness corrections were performed using Monte Carlo simulations in which artificial clusters were inserted into each galaxy. We analyzed three nearby spiral galaxies with SDSS data in exactly the same way to derive their ICMF based on a similar number of young, massive clusters as the irregular galaxy ICMF. We find that the ICMFs of irregular and spiral galaxies for masses >3x10^4 M_sun are statistically indistinguishable. For clusters more massive than 3x10^4 M_sun, the ICMF of the irregular galaxies is reasonably well fit by a power law dN(M)/dM ~ M^-a_M with a_M = 1.88 +/- 0.09. Similar results were obtained for the ICMF of the spiral galaxy sample but with a_M = 1.75 +/- 0.06. We discuss the implications of our result for theories of star cluster formation: the shape of the ICMF appears to be independent of metallicity and galactic shear rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.