Abstract
Sofosbuvir is the first approved direct-acting antiviral (DAA) agent that inhibits the HCV NS5B polymerase, resulting in chain termination. The molecular models of the 2′-dihalo ribonucleotides used were based on experimental biological studies of HCV polymerase inhibitors. They were modeled within HCV GT1a and GT1b to understand the structure–activity relationship (SAR) and the binding interaction of the halogen atoms at the active site of NS5B polymerase using different computational approaches. The outputs of the molecular docking studies indicated the correct binding mode of the tested compounds against the active sites in target receptors, exhibiting good binding free energies. Interestingly, the change in the substitution at the ribose sugar was found to produce a mild effect on the binding mode. In detail, increasing the hydrophobicity of the substituted moieties resulted in a better binding affinity. Furthermore, in silico ADMET investigation implied the general drug likeness of the examined derivatives. Specifically, good oral absorptions, no BBB penetration, and no CYP4502D6 inhibitions were expected. Likely, the in silico toxicity studies against several animal models showed no carcinogenicity and high predicted TD50 values. The DFT studies exhibited a bioisosteric effect between the substituents at the 2′-position and the possible steric clash between 2′-substituted nucleoside analogs and the active site in the target enzyme. Finally, compound 6 was subjected to several molecular dynamics (MD) simulations and MM-PBSA studies to examine the protein-ligand dynamic and energetic stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.