Abstract

Sulfide-driven denitrification (SD) process has been widely studied for treating wastewater containing sulfate and ammonia in recent years. But influence of high ammonia stress on the SD process and microbial community remained unclear. In this work, a series of tests were conducted to investigate effects of different ammonia stress (200-3000mg-total ammonia nitrogen (TAN)/L) on denitrification efficiency, byproduct accumulation and microbial community of the SD process. According to our results, the SD process was severely inhibited, and 32.67±5.15mg/L NO2--N was accumulated when ammonia stress reached 3000mg TAN/L. But the inhibited SD process could recover in about 40 days when ammonia stress was decreased to 200mg TAN/L. After analyzing the microbial community, Thiobacillus sp. (Thiobacillus sp. 65-29, Thiobacillus sp. SCN 64-317, Thiobacillus sp. 63-78 and Thiobacillus denitrificans) was confirmed as dominant bacteria responsible for the SD process. Further, expression of narG, napA, nirK and nirS were inhibited under high ammonia stress, thus making the SD process stuck in NO3- and NO2- reduction step. This study reveals the inhibitory effects of high ammonia stress on the SD process and its possible underlying mechanism with discussion in gene level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.