Abstract

1. Vasa deferentia obtained from reserpine-pretreated rats were incubated (after inhibition of both monoamine oxidase and catechol O-methyltransferase) in media containing 1.1 μmol·l−13H-(−)noradrenaline and various concentrations of Na+ (0–140 mmol·l−1; isosmolality maintained by sucrose or by several monovalent cations). Initial rates of neuronal uptake were determined in each single vas from the difference between “total” and “cocaine-resistant” uptake of 3H-noradrenaline. 2. The “cocaine-resistant” uptake (i.e., the distribution of 3H-noradrenaline observed in the presence of 100 μmol·l−1 cocaine) was considered to be nonneuronal. It was entirely independent of both the external Na+ concentration and the substance used to replace Na+ (or NaCl) in the medium. 3. The neuronal uptake of 3H-noradrenaline was virtually absent in Na+-free medium and was progressively stimulated by increasing Na+ concentrations. The stimulation of uptake by low Na+ concentrations was most pronounced when Tris+ was used to replace Na+; i.e., all other substitutes tested here (including sucrose, Li+, choline+ and K+) inhibited neuronal uptake when compared with Tris+. 4. While the Na+-dependent stimulation of neuronal uptake followed Michaelis-Menten kinetics in Tris+- or Li+-containing media, the kinetics of uptake stimulation by Na+ were rather complex in media containing choline+ or K+ as the substitute cation. 5. Li+ and K+ acted as competitive inhibitors with respect to Na+, whereas the inhibition of neuronal uptake by choline+ was the more pronounced, the higher the concentration of external Na+. 6. At concentrations higher than 25 mmol·l−1, the impairment of neuronal uptake by K+ exceeded that predictable from competitive inhibition of the action of Na+. This was due to the fact that high external K+ concentrations decelerated net uptake very early in the time course of amine accumulation, so that initial rates of uptake are likely to be underestimated under these conditions. 7. Thus, apart from maintaining isosmolality, several substances used to replace Na+ in the medium have inhibitory effects which must be considered in experiments designed to examine the role of Na+ in membrane transport of noradrenaline.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.