Abstract

Pulmonary injury is defined as a progressive inflammation. Extensive pro-inflammatory cytokines are secreted from alveolus, associated with the production of reactive oxygen species (ROS) and apoptosis. The model of endotoxin lipopolysaccharide (LPS)-stimulated lung cells has been applied to mimic the pulmonary injury. Some antioxidants and anti-inflammatory compounds can be used as chemopreventive agents of pulmonary injury. Quercetin-3-glucuronide (Q3G) has been showed to exert antioxidant, anti-inflammatory, anti-cancer, anti-aging and anti-hypertension effects. The aim of the study is to examine the inhibitory potential of Q3G on pulmonary injury and inflammation in vitro and in vivo. Firstly, human lung fibroblasts MRC-5 cells pre-treated with LPS were demonstrated to cause survival loss and ROS generation, were recovered by Q3G. Q3G also exhibited the anti-inflammatory effects on the LPS-treated cells with a reduction in the activation of NLRP3 [nucleotide-binding and oligomerization domain (NOD)-like receptor protein 3] inflammasome, leading to pyroptosis. Also, Q3G showed the anti-apoptotic effect in the cells might be mediated via inhibition of mitochondrial apoptosis pathway. To further explore in vivo pulmonary-protective effect of Q3G, C57BL/6 mice were intranasally exposed to a combination of LPS and elastase (LPS/E) to perform the pulmonary injury model. The results revealed that Q3G ameliorated pulmonary function parameters and lung edema in the LPS/E-induced mice. Q3G also suppressed the LPS/E-stimulated inflammation, pyroptosis and apoptosis in the lungs. Taken together, this study suggested the lung-protective potential of Q3G via downregulation of inflammation, pyroptotic and apoptotic cell death, contributing to its chemopreventive activity of pulmonary injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call