Abstract

To assess the inhibitory effect of gadoxetate disodium on the transporter system using indocyanine green (ICG). Groups of six female B6 Albino mice were injected with the test agent (0.62 mmol/kg gadoxetate disodium) or phosphate-buffered saline (control) 10 min before injection of ICG. Identical fluorescence images were subsequently obtained to create time-efficiency curves of liver parenchymal uptake. The study was performed on hypothermic and normothermic mice. The logarithms of the absorption rate constants (logKa values) and of the elimination rate constants (logKe values) were calculated for each experimental condition, and between-group differences were compared using Student's t-test. The logKe values of the test group were lower than those of the control group at both temperatures (-6.52 vs. -5.87 under hypothermic conditions and -4.54 vs. -4.14 under normothermic conditions), and both differences were statistically significant (p = 0.037, 0.015 respectively). In terms of the logKa values, although the difference did not reach statistical significance (p = 0.052), the test group had lower values than the control group under hypothermic conditions (-0.771 vs. -0.376). In normothermic mice, the logKa values for the test and control groups were 0.037 and 0.277 respectively, thus not significantly different (p = 0.404). Gadoxetate disodium inhibited ICG excretion. Thus, gadoxetate disodium inhibited the ATP-binding cassette sub-family C member 2 transporter. • Gadoxetate disodium inhibited ICG excretion. • Gadoxetate disodium tended to inhibit hepatic ICG uptake. • Drug-drug interactions of gadoxetate disodium need further investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.