Abstract

Myosin was rapidly prepared from the slime mould, Physarum polycephalum to a high level of homogeneity (greater than 95%), in a high yield (about 10 mg/100 g tissue) and in a phosphorylated state (about 5 mol phosphate/mol of 500,000 Mr myosin). Actin activated the Mg-ATPase activity of this myosin in the absence of Ca2+ about 30-fold, and this actin-activated ATPase activity was reduced to about 20% of the original activity when Ca2+ concentration was increased to 50 microM, i.e., the actin-myosin-ATP interactions show Ca-inhibition. The Ca2+ concentration giving half-maximum inhibition was 1-3 microM. The Ca-inhibition was clearly observed at physiological concentrations of Mg2+ but was obscured at both lower and higher concentrations of Mg2+. The Ca-inhibitory effect on ATP hydrolysis by actomyosin reconstituted from skeletal actin and Physarum myosin was quick and reversible. Ca-binding measurement showed that myosin bound Ca2+ with half-maximal binding at 2 microM Ca2+ and maximum binding of 2 mol per mol myosin, indicating that Ca2+ may inhibit the ATPase activity by binding to myosin. The involvement of this myosin-linked regulatory system in the Ca2+ -control of cytoplasmic streaming is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.