Abstract

The ethacrynic acid derivative, 4-(2-butyl-6,7-dichlor-2-cyclopentylindan-1-on-5-yl) oxobutyric acid (DCPIB) is considered to be a specific and potent inhibitor of volume-regulated anion channels (VRACs). In the CNS, DCPIB was shown to be neuroprotective through mechanisms principally associated to its action on VRACs. We hypothesized that DCPIB could also regulate the activity of other astroglial channels involved in cell volume homeostasis. Experiments were performed in rat cortical astrocytes in primary culture and in hippocampal astrocytes in situ. The effect of DCPIB was evaluated by patch-clamp electrophysiology and immunocytochemical techniques. Results were verified by comparative analysis with recombinant channels expressed in COS-7 cells. In cultured astrocytes, DCPIB promoted the activation of a K(+) conductance mediated by two-pore-domain K(+) (K(2P) ) channels. The DCPIB effect occluded that of arachidonic acid, which activates K(2P) channels K(2P) 2.1 (TREK-1) and K(2P) 10.1 (TREK-2) in cultured astrocytes. Immunocytochemical analysis suggests that cultured astrocytes express K(2P) 2.1 and K(2P) 10.1 proteins. Moreover, DCPIB opened recombinant K(2P) 2.1 and K(2P) 10.1 expressed in heterologous system. In brain slices, DCPIB did not augment the large background K(+) conductance in hippocampal astrocytes, but caused an increment in basal K(+) current of neurons. Our results indicate that the neuroprotective effect of DCPIB could be due, at least in part, to activation of TREK channels. DCPIB could be used as template to build new pharmacological tools able to increase background K(+) conductance in astroglia and neuronal cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.