Abstract
2-Mercaptobenzothiazole (2-MBT) in a solution of 0.5 M HCl is an effective corrosion inhibitor for aluminum and aluminum–titanium alloys. Tafel polarization and electrochemical impedance spectroscopy (EIS) were employed to assess this heterocyclic compound’s anticorrosive potential and complementary by scanning electron microscope (SEM) and calculating porosity percentage in the absence and presence of various inhibitor concentrations. Inhibition efficiency (IE%) was strongly related to concentration (10–6–10–3 M). Temperature’s effect on corrosion behavior was investigated. The data exhibited that the IE% decreases as the temperature increases. An increase in activation energy (Ea) with increasing the inhibitor concentration and the decrease in the IE% value of the mentioned compound with raising the temperature indicates that the inhibitor molecules are adsorbed physically on the surface. Thermodynamic activation parameters for Al and Al–Ti alloy dissolution in both 0.5 M HCl and the inhibited solution were calculated and discussed. According to Langmuir’s adsorption isotherm, the inhibitor molecules were adsorbed. The evaluated standard values of the enthalpy (Delta {H}_{ads.}^{o}), entropy (Delta {S}_{ads.}^{o}) and free energy changes (Delta {G}_{ads.}^{o}) showed that Delta {H}_{ads.}^{o} and Delta {G}_{ads.}^{o} are negative, while Delta {S}_{ads.}^{o} was positive. The formation of a protective layer adsorbed on the surfaces of the substrates was confirmed with the surface analysis (SEM). The porosity percentage is significantly reduced in the inhibitor presence and gradually decreased with increasing concentration. Furthermore, the density functional theory (DFT) and Monte Carlo (MC) simulations were employed to explain the variance in protecting the Al surface from corrosion. Interestingly, the theoretical findings align with their experimental counterparts. The planarity of 2-MBT and the presence of heteroatoms are the playmakers in the adsorption process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.