Abstract

Although the effects of local anesthetics on sodium channels and various other channels and receptors have been intensively investigated, there is little information available about their effects on N-methyl-D-aspartate (NMDA) receptors. We examined the effects of four local anesthetics (procaine, tetracaine, bupivacaine, and lidocaine) on NMDA-induced currents by using a whole-cell patch-clamp technique in dissociated mouse hippocampal pyramidal neurons. Procaine and tetracaine produced a reversible and concentration-dependent inhibition of NMDA-induced currents, but lidocaine showed little inhibition at 1 mM or less. The half-maximal inhibition values (mM; mean +/- SEM) for procaine, tetracaine, bupivacaine, and lidocaine at -60 mV were 0.296 +/- 0.031, 0.637 +/- 0.044, 2.781 +/- 0.940 (extrapolated data), and 7.766 +/- 14.093 (extrapolated data), respectively. Procaine 0.2 mM reduced the maximal NMDA-induced currents without affecting the 50% effective concentration values for NMDA. The inhibition by procaine exhibited voltage dependence and was more effective at negative potentials. These results indicate a noncompetitive antagonism of procaine on NMDA receptors and suggest that the inhibition is the result of a channel-blocking mechanism. We examined the effects of four local anesthetics (procaine, tetracaine, bupivacaine, and lidocaine) on NMDA-induced currents by using a whole-cell patch-clamp technique in dissociated mouse hippocampal pyramidal neurons. Both procaine and tetracaine produced a reversible and concentration-dependent inhibition of the NMDA-induced currents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call