Abstract

In previous work, we showed that the binding of the liver x receptor alpha:peroxisome proliferator-activated receptor alpha (LXRalpha:PPARalpha) heterodimer to the murine Cyp7a1 gene promoter antagonizes the stimulatory effect of their respective ligands. In this study, we determined if LXRalpha:PPARalpha can also regulate human CYP7A1 gene promoter activity. Co-expression of LXRalpha and PPARalpha in McArdle RH7777 hepatoma cells decreased the activity of the human CYP7A1 gene promoter in response to fibrates and 25-hydroxycholesterol. In vitro, the human CYP7A1 Site I bound LXRalpha:PPARalpha, although with substantially less affinity compared with the murine Cyp7a1 Site I. The binding of LXRalpha:PPARalpha to human CYP7A1 Site I was increased in the presence of either LXRalpha or PPARalpha ligands. In HepG2 hepatoblastoma cells, fibrates and 25-hydroxycholesterol inhibited the expression of the endogenous CYP7A1 gene as well as the human CYP7A1 gene promoter when co-transfected with plasmids encoding LXRalpha and PPARalpha. However, a derivative of the human CYP7A1 gene promoter that contains a mutant form of Site I that does not bind LXRalpha:PPARalpha was not inhibited by WY 14,643 or 25-hydroxycholesterol in both McArdle RH7777 and HepG2 cells. The ligand-dependent recruitment of LXRalpha:PPARalpha heterodimer onto the human CYP7A1 Site I can explain the inhibition of the human CYP7A1 gene promoter in response to fibrates and 25-hydroxycholesterol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.