Abstract

A series of T24-H-ras-transformed 10T 1 2 fibroblasts with varying metastatic potential was tested for the ability to aggregate platelets. Results indicate that although platelet activation was always detected in the highly metastatic cells, some non-metastatic cells also have the ability to cause platelet aggregation, suggesting that this is a necessary but not sufficient characteristic of the metastatic phenotype. Apyrase, an ADP scavenger, effectively inhibited platelet aggregation by metastatic cells, however, there was no significant increase in ADP secretion or relation to the ability of the tumor cells to activate platelets. Hirudin, a thrombin inhibitor, did not affect aggregation, suggesting that the pathway of activation is thrombin-independent. The glycoprotein processing inhibitor, castanospermine, which reduces glycosidase I activity and metastatic capability, inhibited the ability of metastatic cells to cause platelet aggregation. However, another inhibitor of oligosaccharide processing, swainsonine, which inhibits mannosidase II activity and does not reduce metastasis, had no effect on platelet aggregation. These results show that the integrity of N-linked oligosaccharide structure of glycoproteins is an important feature of the ability of ras-transformed fibroblasts to activate platelets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call