Abstract

The present study was undertaken to determine the effects of porcine growth hormone (pGH) on glucose transport, to establish which lipogenic enzymes were affected by pGH, and to determine if changes in insulin binding or insulin receptor kinase activity contributed to the diminished insulin responsiveness of adipocytes from pigs treated with pGH. Pigs were treated with pGH daily (70 micrograms/kg body wt.) for 7 days. pGH treatment reduced the basal (non-insulin-stimulated) glucose transport rate by 62% and the insulin-stimulated transport rate by 47%. The decline in glucose transport rate was paralleled by a 64% decrease in fatty acid synthesis. The reduction in the lipogenic rate was associated with a marked decline in the activity of several lipogenic enzymes: glucose-6-phosphate dehydrogenase (50% decrease), 6-phosphogluconate dehydrogenase (11% decrease), malic enzyme (62% decrease) and fatty acid synthase (activity not detectable after pGH treatment). The pGH-dependent decline in insulin responsiveness was not associated with any change in the binding of insulin to intact adipocytes or to plasma membrane preparations. The insulin-stimulated tyrosine kinase activity of the wheat-germ agglutinin-purified receptors from pGH-treated adipocytes was not different from that in control adipocytes, except when high concentrations of insulin were employed. These findings establish that pGH elicits a number of metabolic effects in porcine adipocytes which collectively diminish the rate of lipid synthesis, and thereby contribute to the decrease in lipid deposition observed in pGH-treated pigs. Furthermore, the pGH-dependent impairment in insulin action appears to be mediated at some location distal to the receptor kinase step or in other signal pathway(s) which mediate the biological effects of insulin that are not dependent on activation of insulin receptor tyrosine kinase activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.