Abstract

Gene transcription is regulated by transcription factors that can bind to specific regions on DNA. Antigene oligonucleotides (oligos) can bind to specific regions on DNA and form a triplex with the double-stranded DNA. The triplex can competitively inhibit the binding of transcription factors and, as a result, transcription can be inhibited. A genetically structured model has been developed to quantitatively describe the inhibition of the Escherichia coli lac operon gene expression by triplex-forming oligos. The model predicts that the effect of triplex-forming oligos on the lac operon gene expression depends on their target sites. Oligonucleotides targeted to the operator are much more effective than those targeted to other regulatory sites on the lac operon. In some cases, the effect of oligo binding is similar to that of a mutation in the lac operon. The model provides insight as to the specific binding site to be targeted to achieve the most effective inhibition of gene expression. The model is also capable of predicting the oligo concentration needed to inhibit gene expression, which is in general agreement with results reported by other investigators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.