Abstract

In the present work, we established an adipogenesis inhibition assay as an adequate and sensitive in vitro model for reducing animal use by estimating the starting dose for the acute toxic class (ATC) method. First, human adipose-derived stem cells (ADSCs) underwent adipogenic differentiation induction for 14 days. Then, by high-content imaging analysis, we determined the percentage and area of cell differentiation that we considered suitable for negative and positive internal control according to the quality control criteria strictly standardized mean difference (SSMD) and robust SSMD. Moreover, we established sodium dodecyl sulfate (SDS) as an external positive control in this assay. To measure reduction in animal use to estimate the starting dose for the ATC method, we evaluated 10 chemicals representing Globally Harmonized System of Classification and Labeling of Chemicals (GHS) toxicity categories 1–5 and unclassified toxicity and determined the dose-response curves for percentage and area of cell differentiation by using the Hill function with an R2 ≥ 0.85. The resulting IC50 values were used for LD50 prediction and for estimating the starting dose for the ATC method. Our results indicated that use of the inhibition of adipogenesis assay to estimate the starting dose for the ATC method would decrease animal use for 7 out of 10 tested substances, possibly all substances if we consider the more toxic test substances in GHS categories 1, 2, and 3. We can conclude that the present assay is a suitable alternative to reduce animal testing in the first steps of predicting highly toxic substances. Moreover, this method also presents internal and external controls as differentials, which guarantee the quality of the assay as well as the results. These features are important for suggesting a methodology for regulatory purposes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.