Abstract

Biochar is usually considered as an organic improver which can improve soil and increase crop yields. However, the unrestricted application of biochar to normal-fertility farmland will cause chemical stress on crops and affect agricultural production. At present, the effects and mechanisms of high-dose applications of biochar on rice (Oryza sativa L.) production and soil biological characteristics have not been fully studied. In this greenhouse pot experiment, combined with soil microbial metagenomics, three treatments in triplicates were conducted to explore the responses of rice production, soil chemical properties, and soil biological properties to high-dose applications of biochar (5%, w/w) prepared using peanut waste (peanut hulls and straw). The results show that peanut hulls, with a loose texture and pore structure, are a raw material with stronger effects for preparing biochar than peanut straw in terms of its physical structure. In a rice monoculture system, high-dose applications of biochar (5%, w/w) can slightly increase the grains per spike, while significantly inhibiting the spike number per pot and the percentage of setting. High-dose applications of biochar also have significant negative effects on the diversity and stability of soil bacterial and archaeal communities. Moreover, the microbial metabolism and nutrient cycling processes are also significantly affected by changing the soil carbon/nitrogen ratio. This study discusses the response mechanisms of rice production and soil biology to high-dose biochar applications, and complements the understanding of irrational biochar application on agricultural production and land sustainability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.