Abstract

Effective monitoring of rock fracture and seepage is an important information means to ensure the safety of geotechnical engineering. Therefore, sandstone samples were subject to uniaxial compression under different hydraulic conditions in the presence of infrared radiation and observation. This study uses the multiple infrared radiation indexes (ΔAIRT, IRV, VDIIT) and image data to analyze the influence of coupled stress-hydro effect of infrared radiation change on sandstone surface. The main findings are: (1) The surface temperature of sandstone samples rises in the compaction and linear elastic stages, keeps stable or decreases in the fracture development stage, and rapidly decreases in the post-peak failure stage. (2) The samples with internal water pressure not more than 0.30 MPa, surface temperature and load curve at the compaction and linear elastic stage have a strong power function relationship, which a coefficient of determination is 0.8900. (3) The IRV curve appears as a pulse jump at the time of water seepage. After that, both the fracture development and the post-peak failure stages have stepped up. The VDIIT curve also appears to be a pulse jump at the time of water seepage, and obvious up and down fluctuations exist before water seepage and fracture. (4) Based on the Pauta Criterion, by analyzing the values of VDIIT during the experiment, the early warning threshold of sandstone fracture seepage is determined to be 0.00559. The research finding can provide an experimental and theoretical basis for the early warning of flood accidents in underground rock engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call