Abstract

Activity at the centers of galaxies, during which the central supermassive black hole is accreting material, is nowadays accepted to be rather ubiquitous and most probably a phase of every galaxy's evolution. It has been suggested that galactic mergers and interactions may be the culprits behind the triggering of nuclear activity. We use near-infrared data from the new Infrared Medium-Deep Survey (IMS) and the Deep eXtragalactic Survey (DXS) of the VIMOS-SA22 field and radio data at 1.4 GHz from the FIRST survey and a deep VLA survey to study the environments of radio-AGN over an area of ~25 sq. degrees and down to a radio flux limit of 0.1 mJy and a J-band magnitude of 23 mag AB. Radio-AGN are predominantly found in environments similar to those of control galaxies at similar redshift, J-band magnitude, and U-R rest-frame absolute color. However, a sub-population of radio-AGN is found in environments up to 100 times denser than their control sources. We thus preclude merging as the dominant triggering mechanism of radio-AGN. Through the fitting of the broadband spectral energy distribution of radio-AGN in the least and most dense environments, we find that those in the least dense environments show higher radio-loudness, higher star formation efficiencies, and higher accretion rates, typical of the so-called high-excitation radio-AGN. These differences tend to disappear at z>1. We interpret our results in terms of a different triggering mechanism for these sources that is driven by mass-loss through winds of young stars created during the observed ongoing star formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call