Abstract

The InfraRed Imaging Spectrograph (IRIS) is one of three first light science instruments for the Thirty Meter Telescope (TMT). It will provide dedicated function of imaging and integral field spectroscopic observations in parallel with the assistance of a Narrow Field InfraRed Adaptive Optics System (NFIRAOS). The IRIS imager delivers celestial light to a dual-channel Integral Field Spectrograph (IFS) through a pair of pick-off mirrors in the central field. The IFS creates multi-functional ability to explore the universe in IR (0.84 – 2.4um) with moderate spectral resolution of R=4,000/8,000 and four spaxel scales of 4, 9, 25, 50 milli-arc-seconds (mas). An image slicer serves one of the two spectral channels as its Integral Field Unit (IFU) in two coarse spaxel scales of 25 and 50mas over the continuous science fields of 2.2x1.125 arc-seconds (arcsec) and 4.4x2.25 arcsec respectively. It splits the field to 88 unit systems, and then re-images at two parallel slits in order to take full advantage of the detector (4Kx4K @ 15um). This paper describes a novel all-reflective design of image slicer, which uses a new ‘brick stage’ layout to stagger the adjacent mirrors and deliver image quality close to diffraction limit. The quasi-telecentric optical design gives more friendly interfaces with pre-optics and spectrograph than the conceptual design. Here, more technical issues are discussed to guide the further study on optical performance and fabrication feasibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call