Abstract

Stinespring's dilation theorem is the basic structure theorem for quantum channels: it states that any quantum channel arises from a unitary evolution on a larger system. Here we prove a continuity theorem for Stinespring's dilation: if two quantum channels are close in cb-norm, then it is always possible to find unitary implementations which are close in operator norm, with dimension-independent bounds. This result generalizes Uhlmann's theorem from states to channels and allows to derive a formulation of the information-disturbance tradeoff in terms of quantum channels, as well as a continuity estimate for the no-broadcasting theorem. We briefly discuss further implications for quantum cryptography, thermalization processes, and the black hole information loss puzzle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.