Abstract

We consider a superconducting quantum interference device having two arbitrary different over damped junctions transporting different currents. By replacing the governed two-dimensional Fokker–Planck equation with two one-dimensional equations, two density probability currents are appeared which determine the statistical average of the time-averaged total voltage across the device. To obtain the density probability currents, two coupled integral equations are introduced. These equations together with two other equations coming from normalizing conditions, found one generalized formulation for the voltage–current characteristics of the device. Based on that, the voltage–current characteristics of large inductance asymmetric DC SQUIDs having first and second harmonics in their current-phase relations are obtained and some predictions are illustrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call