Abstract
Purpose. The main purpose of this study is to investigate the unsteady flow behavior of second-grade inviscid fluid between parallel plates. The effects on the flow are explored through modeling of continuity, momentum, and energy equations. Graphical and tabular exploration has been made to analyze the impact of several influential variables on the dimensionless temperature and velocity profiles. Three-dimensional graphs and stream lines are also mentioned. Design/Approach/Methodology. The governing equations have been metamorphosed into nonlinear ordinary differential equations by using suitable transformation which is the main focus of the study. To approach the solution of the problem numerically, we have used the numerical method such as shooting technique along with Runge–Kutta method is implemented. Findings. The graphs for the squeezing number, Prandtl number, and Eckert number are decreasing by increasing the values of these parameters. The graphs of skin friction coefficient and Nusselt number are increasing by changing the values of both parameters. Originality/Value. The significances of an unsteady squeezed flow of a nonviscous second-grade fluid between parallel plates by using boundary layer phenomenon are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.