Abstract

An experimental investigation of the influence of jet precession on the formation of large-scale instantaneous turbulent particle clusters is reported. Instantaneous planar particle distributions in the first seven nozzle diameters downstream from a simulated pulverised fuel burner have been measured using planar nephelometry, a laser-based instantaneous concentration technique. Large-scale instantaneous particle clusters (ITPCs) are identified and quantified from these data. A systematic study is conducted to assess the influence of the ratio of the precessing jet to axial momentum streams on ITPCs. The results show that ITPCs can be modified by this momentum ratio. The average size of ITPCs reaches a maximum for cases with high precessional momentum, although excessive precessional momentum can reduce ITPC size. The particle number density per unit area inside these ITPCs reaches a maximum for an intermediate value of jet precession. The spread of ITPC centroids can be estimated from the mean jet spread of particles and therefore increases with increasing precessing jet momentum once above a certain threshold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.