Abstract

Abstract. Hypolimnetic anoxia in eutrophic lakes can delay lake recovery to lower trophic states via the release of sediment phosphorus (P) to surface waters on short timescales in shallow lakes. However, the long-term effects of hypolimnetic redox conditions and trophic state on sedimentary P fraction retention in deep lakes are not clear yet. Hypolimnetic withdrawal of P-rich water is predicted to diminish sedimentary P and seasonal P recycling from the lake hypolimnion. Nevertheless, there is a lack of evidence from well-dated sediment cores, in particular from deep lakes, about the long-term impact of hypolimnetic withdrawal on sedimentary P retention. In this study, long-term sedimentary P fraction data since the early 1900s from Lake Burgäschi provide information on benthic P retention under the influence of increasing lake primary productivity (sedimentary green-pigment proxy), variable hypolimnion oxygenation regimes (Fe∕Mn ratio proxy), and hypolimnetic withdrawal since 1977. Results show that before hypolimnetic withdrawal (during the early 1900s to 1977), the redox-sensitive Fe∕Mn-P fraction comprised ∼50 % of total P (TP) in the sediment profile. Meanwhile, long-term retention of total P and labile P fractions in sediments was predominantly affected by past hypolimnetic redox conditions, and P retention increased in sedimentary Fe- and Mn-enriched layers when the sediment-overlaying water was seasonally oxic. However, from 1977 to 2017, due to eutrophication-induced persistent anoxic conditions in the hypolimnion and to hypolimnetic water withdrawal increasing the P export out of the lake, net burial rates of total and labile P fractions decreased considerably in surface sediments. By contrast, refractory Ca–P fraction retention was primarily related to lake primary production. Due to lake restoration since 1977, the Ca–P fraction became the primary P fraction in sediments (representing ∼39 % of total P), indicating a lower P bioavailability of surface sediments. Our study implies that in seasonally stratified eutrophic deep lakes (like Lake Burgäschi), hypolimnetic withdrawal can effectively reduce P retention in sediments and potential for sediment P release (internal P loads). However, after more than 40 years of hypolimnetic syphoning, the lake trophic state has not improved nor has lake productivity decreased. Furthermore, this restoration has not enhanced water column mixing and oxygenation in hypolimnetic waters. The findings of this study are relevant regarding the management of deep eutrophic lakes with mixing regimes typical for temperate zones.

Highlights

  • Phosphorus (P) eutrophication in freshwater lakes is a global problem and has been a matter of concern to the public for several decades

  • The objectives of this study were to (1) explore the main factors controlling long-term changes of P fraction retention in sediments of deep lakes, (2) investigate how sediment P fraction retention responds to changes in lake eutrophication and hypolimnetic anoxia of the past prior to anthropogenic eutrophication, (3) examine the long-term effects of lake hypolimnetic withdrawal restoration on sedimentary P fraction retention in seasonally stratified deep lakes, and (4) evaluate with sediment P data the predictions from Gächter (1976) that hypolimnetic withdrawal should result in reduced total P content in sediments and sediment P release to lake water

  • This study shows that in Lake Burgäschi, more than half of sediment P is buried in relatively labile P fractions (Fe, Mn, and Al–P), yet with a low potential for P release from these labile P fractions in deeper layers

Read more

Summary

Introduction

Phosphorus (P) eutrophication in freshwater lakes is a global problem and has been a matter of concern to the public for several decades. P bound to redox-sensitive Fe and Al−Fe (oxyhydr)oxides can be potentially released from surface sediments into lake water (Burley et al, 2001), which was supported by numerous short-term (over the course of days or a season) laboratory or in situ studies (Chen et al, 2018; Smith et al, 2011). Based on this paradigm, it was assumed that an oxic sediment–water interface might limit the release of Fe–P from sediments and improve P retention in lake sediments. It is not yet fully understood whether and how lake trophic levels and hypolimnetic anoxia can influence the long-term behavior of sedimentary P fraction retention in deep lakes

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call