Abstract

Soil contaminated with potentially toxic metals (PTMs) has being a global environmental issue, which needs to be addressed on the priority basis. Fly ash (FA) is a kind of low-cost alkaline materials, which has been widely used in remediation of soil contaminated by PTMs, while the effects of FA on the stability for PTMs in contaminated farmland soil are still not clearly evaluated. In this study, cadmium (Cd) contaminated soil samples, collected from Shaanxi (SX), Hubei (HB), and Zhejiang (ZJ) province of China, were amended with FA addition (0, 1%, 2.5%, 5%, and 10% dose), and 1-year changes of Cd availability in soil samples were focused on. In addition, biological assessment method through pot culture was carried out to evaluate the reuse potential of Cd contaminated soils amended by FA. The result indicated that FA had a notable impact on decreasing the Cd mobility of SX soil (sand type), with 18.2~52.1% reduction in the DTPA extractable solution, followed by HB soil with 5.9~16.7% reduction, but no obvious effect of FA on ZJ soil (clay type) was observed. Furthermore, the results of pot experiment revealed that FA application could increase the biomass of Chinese cabbage. However, the DTPA extractable Cd in soils after planation and the Cd accumulation of plant increased. The results revealed that FA was not a promising soil stabilizer to immobilize HMs in Cd contaminated soil, and careful consideration should be given to Cd contaminated soils with FA restoration especially in their using for farmland productive due to the remaining risk of Cd bioavailability. These results also contributed to provide references for similar soil pollution remediation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.