Abstract

In photoacoustic computed tomography (PACT), the “finite aperture effect” is often characterized as a tangential resolution that increases proportionally with the distance from the rotation center. However, this conclusion is based on the inaccurate point-detector assumption used in image reconstruction. In this study, we appropriately modeled the finite size of the acoustic detector in the back-projection (BP) based image reconstruction to improve the accuracy of the time delay calculation and systematically investigated its effects. Our results showed that the main effect of the finite aperture size is the creation of a limited high-quality imaging region (HQIR) around the scanning center, due to the directional sensitivity of the detector. We also demonstrated that the “finite aperture effect” can reduce the optimal number of detectors required for spatial anti-aliasing. These new findings provide novel perspectives for optimizing PACT systems and corresponding reconstruction methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call